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Study on ultra-precision phase synchronization tech-
nique employing phase-locked loop*
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Microwave-to-optical phase synchronization techniques have attracted growing research interests in recent years. Here, 

we demonstrate tight, real-time phase synchronization of an optical frequency comb to a rubidium atomic clock. A de-

tailed mathematical model of the phase locking system is developed to optimize its built-in parameters. Based on the 

model, we fabricate a phase locking circuit with high integration. Once synchronized, the fractional frequency instability 

of the repetition rate agrees to 6.35×10-12 at 1 s and the standard deviation is 1.5 mHz, which indicates the phase syn-

chronization system can implement high-precision stabilization. This integrated stable laser comb should enable a wide 

range of applications beyond the laboratory. 
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Optical frequency combs are uniquely capable of phase 

coherently linking the optical, microwave, and terahertz 

regimes. Recently, Mode-locked fiber lasers (MLFLs) 

enable applications such as absolute distance measure-

ments[1-3], frequency metrology[4] and long-distance time 

and frequency dissemination system[5-7]. Moreover, the 

application of optical frequency comb in the calibration of 

astronomical spectrometers has become a developing 

trend of planetary detection technology[8,9]. The crucial 

challenge for these applications is to generate ultra-

high-stable pulses at a high repetition rate. The cavity 

length of MLFLs is easily influenced by various envi-

ronmental factors such as temperature and pressure, 

which makes the repetition rate drift and the frequency 

stability deteriorate. Therefore, synchronizing a fre-

quency comb to a more stable reference source is critical 

to the frequency stabilization of MLFLs[10]. Owing to 

their distinguished frequency stability, rubidium clocks 

are used as the frequency reference[11]. The repetition rate 

of the laser is about 80 MHz. It can be coarsely adjusted 

remotely. The repetition rate is phase-locked via feedback 

to the cavity length, which is controlled through a “slow” 

and a “fast” piezo-electric transducer (PZT) bonded to the 

intracavity fiber. A feedback loop is used to track a slight 

change in the repetition frequency. The jitter of the repe-

tition rate can be quickly eliminated by changing the 

cavity length. Many schemes of the microwave-to-optical 

wave tight phase coherence based on the feedback loop 

have been proposed, such as the standard phase-locked 

loop (PLL) employing the analog phase detector[12,13], the 

PLL with the proportional-integral-derivative (PID) 

regulator[14], and fiber loop-based optical-microwave 

phase detector (FLOM-PD) based on Sagnac loop tech-

nique[6,15]. Among the various PLLs, charge pump PLL 

has become the mainstream in recent years, owing to the 

merit of integrated easily, low power, low jitter, the 

smallest zero capture phase error and a big capture scale. 

Here, we propose a highly integrated charge pump PLL 

system based on a phase-frequency detector (PFD) chip 

which possesses a programmable integer and fractional 

frequency synthesis to flexibly setup the frequency of the 

phase detector inputs. Although the FLOM-PD synchro-

nous locking method can achieve microwave-to-optical 

phase synchronization with extremely high phase stability 

and low phase noise, it has a complex configuration and 

higher cost. Moreover, compared with the FLOM-PD 

method, the scheme we proposed possesses the charac-

teristics of high anti-interference performance, compact 

structure, and simple installation and maintenance, which 

enable a wide range of applications beyond the laboratory. 

As conceptually illustrated in Fig.1, a simplified con-

figuration of a phase servo system consists of three basic 

configurations: phase detector (PD), loop filter (LP) and 

voltage controlled oscillator (VCO). Charge pump PLL is 

a typical representative of digital-analog mixed PLL, 

which has an excellent performance in phase tracking[16]. 
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Its PFD controls the charge-discharge time of the charge 

pump through the high and low levels of different duty 

cycles to reflect the phase error between the reference 

signal and the VCO. Its LP converts a current signal re-

flecting the phase error into a voltage signal and sup-

presses high-frequency components output by the PD and 

noise interference from the VCO. In our synchronization 

scheme, a voltage amplifier, a high-voltage driver, a pie-

zo-electric transducer (PZT), and an MLFL make up the 

VCO of a charge-pump PLL. The real-time phase syn-

chronization of the MLFL and the rubidium clock is 

guaranteed by continuously adjusting the scaling of the 

PZT. Additionally, we construct a mathematical model of 

phase locking system based on charge pump PLL for 

theoretical analysis. Theoretical analysis is conducive to 

the analysis of system performance and has guiding sig-

nificance for further optimization design. For the con-

venience of analysis, the Laplace transform is used to 

transform the time-domain model of the phase locking 

system into a frequency-domain model. According to the 

mathematical model of each basic configuration of PLL, 

three important transfer functions are derived: open-loop 

transfer function, closed-loop transfer function, and error 

transfer function. We will analyze the final steady-state 

error, transient response and stability of the system 

through simulation to verify the feasibility of the phase 

locking scheme based on the charge pump PLL. 

 

 
PFD: phase-frequency detector; CP: charge pump; HV: high-voltage; 

MLFL: mode-locked fiber laser; PZT: piezo-electric transducer 

Fig.1 Configuration of the PLL utilized for phase 
locking of the mode-locked fiber laser 

 

Fig.2 provides a mathematical model of mode-locked 

fiber laser for PLL technique in the frequency domain. 
Θi(s), Θo(s) and Θe(s) represent the Laplace transforms of 

the phase signals of the reference source, the laser, and 

the phase detector, respectively. Radiofre-

quency N counter allows a division ratio in the PLL 

feedback path. Icp(s) represents the s domain of the output 

signal of charge pump. Ue(s) is the s domain representa-

tion of the output signal of the loop filter. Kd is the gain of 

the phase detector, F(s) is the transfer function of the loop 

filter, and K(s) is the transfer function of the VCO. From 

the model shown in Fig.2, three basic transfer functions of 

the PLL model in frequency domain, including open-loop 

transfer function G(s), close-loop transfer function H(s) 

and error-transfer function He(s) are given by 
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PFD: phase-frequency detector; CP: charge pump; PD: phase detector; 

LP: loop filter; VCO: voltage controlled oscillator 

Fig.2 Mathematical model for PLL technique in the 
frequency domain 
 

In the following, we will analyze the phase transmis-

sion characteristics of the phase detector, loop filter, and 

VCO to derive a detailed mathematical model of the phase 

locking system. A phase detector is a device whose output 

is proportional to the phase difference between the two 

input signals. The error signal Icp(s) can be expressed as   
Icp(s)=KdΘe(s)=Kd(Θi(s)–Θo'(s)),                (4) 

where Θo'(s) is the phase arguments of mode-locked laser 

through the N frequency counter. Kd is the gain of the 

phase detector. Assuming that Icp is the discharge current 

of charge pump, according to Eq.(4), the gain of phase 

detector of charge pump PLL can be expressed as 
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The phase detector signal is composed of several items, 

and a post-stage loop filter is required to suppress its high 

frequency components and extract the phase error signal. 

Fig.3 shows a commonly used active lead-lag filter. A 

lead-lag filter combines a phase-leading with a 

phase-lagging network. According to Thevenin’s theorem, 

this circuit is applied to the filter loop of a charge pump 

PLL. Its transfer function F(s) is given by 
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where τ0=R0C1, τ1=R1C1, τ2=R2C2 and A=R0Rf/Rb. 

In the PLL locked state, the loop filter output is a 

regulated signal that reflects the phase error. The cavity 

length of the laser can be regulated by PZT driven voltage. 

The expansion and contraction of the laser resonator can 

compensate for phase jitter. Assuming the original cavity 

length is L0, ignoring the effect of laser delay, the transfer 

function of VCO is given approximately by 
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where c is light velocity, and ko is called VCO gain[13].  

This equation is a first-order time-delay system of the  

standard VCO model. According to Eqs.(1)—(3) and 

Eqs.(5)—(7), open-loop transfer function and er- 

ror-transfer function can be rewritten as
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where τ0=τ0+τ1+τ2 and τ'=τ0+τ1. τ and τ' are the time con-

stants of the loop filter. In the following, we will apply 

Eqs.(8) and (9) to analyze the characteristic of the PLL. 

 

 
Fig.3 Schematic of low-pass filter for PLL 

 

In engineering control systems, the final steady-state 

error is defined as the deviation between the expected 

value and the actual value after the transient response has 

died out[17]. In a PLL system, the final steady-state error is 

considered to be the phase error θe(∞). To see how the 

phase locking system settles on typical excitation signals 

applied to its reference input, we will derive the final 

steady-state errors for phase steps, frequency steps, and 

frequency ramps. When the excitation signal θi(t) is given, 

the phase error θe(t) is calculated by the final phase error 
He(s) as defined in Eq.(9). Using the final value theorem 

of the Laplace transform, θe(∞) is written as 
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If a phase step of size ΔΦ is applied to the excitation, we 

have Θi(s)=ΔΦ/s. Using Eqs.(9) and (10), the steady-state 

error is given by 
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This quantity becomes 0. According to Eq.(11), when the 

PLL system operates in steady-state, the system can off-

set the phase difference jitter between the reference 

source and the laser. In case of frequency step of size Δω, 

for its Laplace transform we get Θi(s)=Δω/s2. Hence, the 

steady-state error becomes 
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This quantity becomes a constant. According to Eq.(12), 

when the PLL system is in steady-state, the phase differ-

ence between reference and laser is constant. For the 

Laplace transform of the frequency ramp, we have 

Θi(s)=Δω'/s3 where Δω' is the derivative of Δω. For the 

steady-state error we get  
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According to Eq.(13), the final steady-state error does not 

approach a constant. Hence, the laser cannot synchronize 

phase with the reference source. In the phase locking 

system, selecting a high-precision long-term stable atomic 

clock as a reference is equivalent to a frequency step of 

size Δω as a reference input. Therefore, the final 

steady-state error of the control system is constant, and 

the laser maintains phase stability. Generally, when the 

response rate of the phase locking system is too slow, the 

system is prone to instability. Therefore, it is critical to 

analyze the transient response of the phase locking sys-

tem. 

Transient response is defined as the response process 

from the initial input to the final steady state. Knowing the 

final phase error He(s) of PLL, we can calculate its re-

sponse on important excitation signals, including phase 

steps, frequency steps, and frequency ramps. For the 

convenience of simulation analysis, we define the default 

values of the parameters. We assume the repetition rate of 

MLFLs is 80.011 4 MHz, and the charge pump output 

maximum current is 5 mA. Under this condition, τ0 is 

3×10-9, τ1 is 3.3×10-10, τ2 is 1×10-6, A is 600, k0 is 1.3×10-4, 

and L0 is c/80 011 400, where c is light velocity. Fig.4(a) 

shows the transient response of the phase-locking system 

to a phase step. It can be seen in Fig.4(a) that when the 

phase changes abruptly, the system can quickly eliminate 

the phase error and recover to a steady state. If a fre-

quency ramp is applied to the reference input, the tran-

sient response of the phase-locking system is shown in 

Fig.4(b). In this case, the phase error increases with the 

passage of time, and the system cannot get into a steady 

state.  

 

 
Fig.4 Transient responses of the phase-locking sys-
tem to (a) a phase step and (b) a frequency ramp 

 

Here, the frequency step signal output by the rubidium 

clock is used as the reference excitation source in phase 

locking system. Therefore, we should focus more on the 

influence of parameters on the transient response when 

the frequency step signal is applied to reference input. 

The designer can adjust different parameters for ac-

quiring different transient response in order to optimize 

the built-in parameters. According to Eq.(9), VCO gain 
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coefficient
0

k and frequency counter N have opposite ef-

fects on the transient response of the system. In this article, 

we only adjust the parameter N. As shown in Fig.5(a), our 

phase locking system has an automatic adjustment func-

tion that guarantees the phase synchronization of the laser 

and the rubidium clock. According to the theory of fem-

tosecond oscillator noise analysis, the higher harmonics 

of the repetition frequency carry more phase noise in-

formation[18]. For this reason, directly synchronizing the 

higher harmonics of the repetition frequency means that 

more phase noise can be suppressed. Decreasing the fre-

quency N counter can shorten the time for the transient 

response to reach the steady state, and improve the syn-

chronization accuracy as shown in Fig.5(b). 

 

 
Fig.5 Transient responses of the phase-locking sys-
tem to (a) a frequency step and (b) the frequency step 
with different N 

 

The degree of stability is a crucial characteristic of the 

PLL. It indicates the ability of the loop to maintain sys-

tem balance under external interference, noise, and other 

factors. The stability criterion has presented that a PLL 

with a positive phase margin is stable, otherwise, it is 

unstable. Assuming ω=ω0 and |G(jω)|=1, phase margin is 

defined as Arg[G(jω)+π]. In engineering applications, the 

phase margin is not less than 45°. The larger the phase 

margin, the more stable the system, but the more obvious 

the damping. The Bode plot is a useful method for 

evaluating closed-loop stability by using the characteris-

tics of open-loop frequency transmission. It is an effec-

tive tool for characterizing stability. According to Eq.(8), 

we can draw the Bode plot of the system. Fig.6 shows 

Bode plot of the phase locking system of the MLFL. The 

phase margin is greater than 45°, and the system is in a 

stable state. The response bandwidth of the phase locking 

system is limited by the PZT bandwidth of the laser, 

which generally does not exceed 10 kHz. 

In the following, we deploy a detailed experimental 

system and fabricate a phase locking circuit with high 

integration based on the phase-locking theoretical analy-

sis of the mode-locked laser. The frequency stability 

characteristics of the system are measured experimentally 

to verify the feasibility of the phase locking system. Fig.7 

shows the schematic diagram of the experimental setup of 

the phase-locking system. In our experiment, the rubid-

ium clock is utilized as the reference. Meanwhile, the 

collimated pulse beam passes through the photodetector 

to produce the microwave signal to be synchronized. Our 

homemade PLL device selects the PFD chip(ADF4155). 

This chip allows the implementation of fractional or in-

teger N PLL frequency synthesizers. Moreover, this chip 

is for use with the repetition rate of MLFL up to an 8 GHz 

operating range. Direct digital frequency synthesizer 

(DDS) produces signals with different phases and fre-

quencies used to verify the final steady-state error and 

transient response of the phase locking system. A micro-

controller unit (MCU) controls all on-chip registers 

through a 3-wire interface. Meanwhile, the MCU moni-

tors the phase locked state of the system by sampling the 

output voltage of the loop filter. The band-pass filter (BPF) 

uses K&L microwave C series 5C40-800/U20-O/O nar-

row-band filter, which has the features of high Q value, 

low insertion loss, and high out-of-band rejection. 

 

 
Fig.6 Bode plot of the phase locking system 

 

 

 
MCU: microcontroller unit; PFD: phase-frequency detector; HV: 

high-voltage; PZT: piezo-electric transducer 

Fig.7 Schematic diagram of the experimental setup 
 

The mode-locked laser produces an optical pulse with a 

repetition rate of 80.011 4 MHz. The optical pulse is di-

vided into two channels by a beam splitter. One channel is 

used to synchronize with the reference, and the other 

channel is input to the frequency counter for evaluation of 

phase-locking performance. The repetition frequency is 

measured by the Agilent 53230A frequency counter that 

offers resolution capabilities up to 12 digits/sec frequency 

resolution on a one second gate and single-shot time 
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interval measurements down to 20 psec. The MLFL is 

not equipped with anti-vibration and temperature control 

devices in the experimental test. The sampling interval 

of the frequency counter is set to 0.1 s. Under the above 

conditions, Fig.8 shows the value of the repetition rate of 

the MLFL in the open-loop state and the locked state for 

one hour. In the open-loop state, the standard deviation 

of frequency jitters is 16.716 5 Hz. Meanwhile, in the 

locked state, the standard deviation of frequency jitters is 

1.5 mHz. By comparison, the phase-locking perform-

ance is exceptionally outstanding, and the standard de-

viation can be improved by four orders of magnitude. 

Generally, frequency instability is an effective tool for 

characterizing the phase locking performance of lasers. 

It is defined as a random fluctuation of the average 

frequency due to noise modulation. It reflects the degree 

of frequency instability and is usually expressed as Allan 

variance[19]. Fig.9 shows the frequency instability of the 

MLFL in the locked and open-loop states and the fre-

quency instability of the rubidium clock. Experimental 

results show that the frequency instability can reach 

6.35×10-12 at 1 s in the locked state, and the frequency 

instability is improved by two orders of magnitude. The 

experimental results prove that our proposed phase 

locking system can achieve high-precision phase syn-

chronization of the MLFL and the rubidium clock. 

 

 

Fig.8 Repetition rates of the MLFL in (a) the locked 
state and (b) the open-loop state 

 

 
Fig.9 Measurement of the fractional frequency instability 

We report the phase synchronization technique of the 

MLFL to the rubidium clock with a highly integrated 

charge pump PLL system. By setting up a mathematical 

model of the phase locking system, we build an experi-

mental phase locking system. The simulation and ex-

perimental results jointly prove out the correction of our 

model. With the system described above, the frequency 

comb is tightly locked in the rubidium clock. For further 

optimization, we will set out to improve the 

phase-detection frequency, utilize a more accurate atomic 

clock, and set up a temperature-control and shock-proof 

device for the laser to ensure more accurate phase syn-

chronization in the further work. Our proposed phase 

locking system is anticipated to be applied in various 

scientific as well as engineering areas. Optical frequency 

combs allow for high-fidelity frequency transfer to the 

mid-infrared, terahertz, and microwave domains. Time 

and frequency communication is achieved by comparing 

counter-propagating optical pulse trains from optical 

frequency combs stabilized to clocks at remote locations. 

Hence, the technique of microwave-to-optical wave tight 

phase coherence is the prerequisite for microwave com-

munications via fiber link and future precise navigation 

and sensing systems. Also, this technique could similarly 

enable applications such as precise formation flying of 

phased satellite arrays. 
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